

400Gb/s QSFP-DD FR4 Transceiver

OD-PPMR4F410ST0

400Gb/s QSFP-DD FR4 2km Optical Transceiver

1. Features

- Compliant to QSFP-DD MSA Type2
- 4 CWDM wavelength lanes MUX/DEMUX
- 100G Lambda MSA 400G-FR4
- Up to 2km over SMF with FEC
- 8 x 53.125Gb/s electrical interface (400GAUI-8)
- Data Rate 106.25Gb/s (PAM4) per channel.
- Maximum power consumption 10W
- **■** +3.3V Single Power Supply
- Duplex LC connector
- Lead-Free and RoHS compliant

Applications

400G Ethernet (400G-FR4) Data Center Interconnect

1Absolute Maximum Ratings

Item	Danamatan	Unit	Specification			Note
No	Parameter	Unit	Min	Тур.	Max	Note
Ab-1	Storage Temperature (Ts)	deg.C	-40		85	
Ab-2	Supply Voltage (Vcc1, VccTx, VccRx)	V	0		4	
Ab-3	Relative Humidity (non-condensing)	%	10		90	
Ab-4	Damage Threshold, each lane	dBm	4.5			

2. Operating Conditions

Item No	Items	Unit	Min.	Тур.	Max.	Remarks
Oc-1	Transmission Cable		SMF (ITU-T G.652)			
Oc-2	Case Temperature (Tc)	deg.C	0		70	
Oc-3	Power supply voltage (Vcc)	V	3.135	3.300	3.465	
Oc-4	Power Consumption	W			10	
Oc-5	Link Distance	km	0.002		2	Note 1.
Oc-6	Pre-FEC Bit Error Ratio				2.4 x 10 ⁻⁴	

Notes:

3. Block Diagram

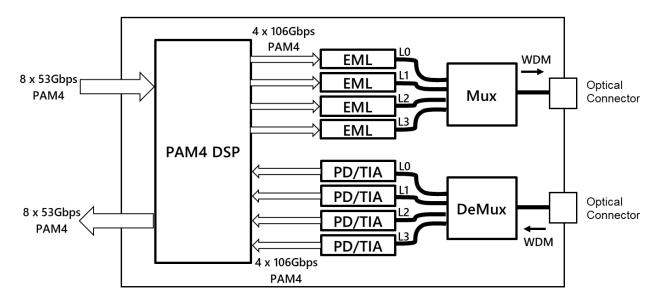


Figure 1. Block Diagram

^{1.} FEC required on host system to support maximum distance.

4. Optical Interface

4.1 Transmitter Section

Item No	Parameter	Symbol	Min.	Тур.	Max.	Units	Remarks
TO-1	Data Rate		53.125		GBd	±100 ppm	
TO-2	Modulation Format			PAM4			
		L0	1264.5	1271	1277.5	nm	
то 1		L1	1284.5	1291	1297.5	nm	
TO-3	Center wavelength range	L2	1304.5	1311	1317.5	nm	
		L3	1324.5	1331	1337.5	nm	
TO-4	Side mode suppression ratio	SMSR	30			dB	
TO-5	Total Average Launch Power	Po_total			9.3	dBm	
TO-6	Average launch power, each lane	Po_avg	-3.3		3.5	dBm	Note 1.
TO-7	Outer Optical Modulation Amplitude (OMA _{outer}), each Lane	Po_oma	-0.3		3.7	dBm	Note 2.
TO-8	Transmitter and dispersion eye closure for PAM4, each Lane	TDECQ			3.4	dB	
TO-9	TDECQ - 10*log ₁₀ (Ceq), each Lane				3.4	dB	Note 3.
TO-10	Extinction ratio	ER	3.5		=	dB	
TO-11	Average launch power of off transmitter, each lane				-20	dBm	
TO-12	RIN _{17.1} OMA	RIN			-136	dB/Hz	
TO-13	Optical return loss tolerance	ORL			17.1	dB	
TO-14	Transmitter reflectance	TR			-26	dB	
TO-15	Launch Power in OMA outer minus TDECQ, each Lane for ER \geq 4.5dB for ER \leq 4.5dB		-1.7 -1.6			dB	
TO-16	Difference in Launch Power between any Two Lanes (OMA _{outer})			6: 14	4	dB	

Note 1. Average launch power (min) is informative and not the principal indicator of signal strength.

Note 2. Even if the TDECQ < 1.4 dB for an extinction ratio of \geq 4.5 dB or TDECQ < 1.3 dB for an extinction ratio of < 4.5 dB, the OMA outer (min) must exceed the minimum value specified here.

Note 3. Ceq is a coefficient defined in IEEE Std 802.3-2018 clause 121.8.5.3 which accounts for reference equalizer noise enhancement.

4.2 Receiver Section

Item No	Parameter	Symbol	Min.	Тур.	Max.	Units	Remarks
RO-1	Data Rate			53.125		GBd	$\pm 100 \text{ ppm}$
RO-2	Modulation Format			PAM4			
		L0	1264.5	1271	1277.5	nm	
D. C. 2		L1	1284.5	1291	1297.5	nm	
RO-3	Center wavelength range	L2	1304.5	1311	1317.5	nm	
		L3	1324.5	1331	1337.5	nm	
RO-4	Average receiver power,each lane	Pr_avg	-7.3		3.5	dBm	Note 1
RO-5	Receiver power (OMA _{outer}), each lane	Pr_oma			3.7	dBm	
RO-6	Receiver reflectance	RR			-26	dB	
RO-7	Receiver sensitivity (OMA _{outer}), each lane				max(-4.6, SECQ - 6.0)	dBm	Note 2
RO-8	Stressed Receiver Sensitivity (OMA _{outer}), each Lane	SRS			-2.6	dBm	
RO-9	LOS Assert Level	LOSA	-20.0			dBm	
RO-10	LOS Deassert Level	LOSD			-10.3	dBm	
RO-11	LOS Hysteresis	LOSH	0.5			dB	
RO-12	Difference in Receiver Power between any Two Lanes (OMA _{outer})				4.1	dB	
RO-13	Stressed Eye Closure for PAM4 (SECQ), Lane under Test			3.4		dB	
RO-14	SECQ -10*log10(Ceq), Lane under Test			3.4		dB	
RO-15	OMAouter of each Aggressor Lane			1.5		dBm	

Note 1. The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level.

Note 2. Receiver sensitivity (OMAouter) is informative and is defined for a transmitter with a value of SECQ up to 3.4 dB, Receiver sensitivity should meet the equation in the table, which is illustrated in Figure 2.

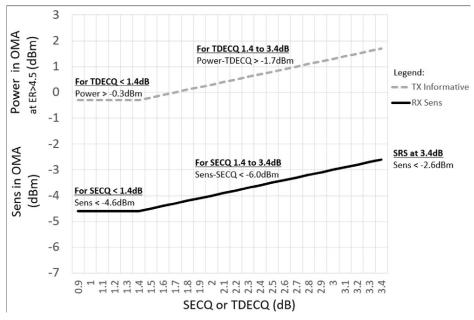


Figure 2. Illustration of receiver sensitivity mask for 400G-FR4

5. Electrical Interface

5.1 High Speed electrical Interface Specifications

Table 1. Transmitter High Speed Electrical Specifications (each lane)

Parameter	Min.	Тур.	Max.	Units	Conditions
Signaling rate	26	$6.5625 \pm 100 \text{ pps}$	n	Gbd	
Differential pk-pk Input voltage Tolerance	900			mVpp	IEEE 802.3bs 120E.3.1.2
Input impedance mismatch			10	%	
Single-ended Voltage Tolerance Range(min)	-0.4 to 3.3			V	
DC Common Mode input Voltage (Vcm)	-350		2850	mV	

Table 2. Receiver High Speed Electrical Specifications (each lane)

Parameter	Min.	Typ.	Max.	Units	Conditions
Signaling rate	26	$5.5625 \pm 100 \text{ pp}$	om	Gbd	
Differential pk-pk Output voltage			900	mVpp	
AC Common Mode Output Voltage, RMS			17.5	mV	
Differential Termination Resistance Mismatch			10	%	At 1 MHz
Transition Time, 20 to 80%	9.5			ps	
Near-end Eye Symmetry Mask Width ESMW		0.265		UI	
Near-end Eye Height, Differential	70			mV	
Far-end Eye Symmetry Mask Width ESMW		0.2		UI	
Far-end Eye Height, Differential	30			mV	
Far-end Pre-cursor ISI Ratio	-4.5		2.5	%	
Common Mode Output Voltage(Vcm)	-350		2850	mV	

6. Outline Drawings6.1 Package Outline

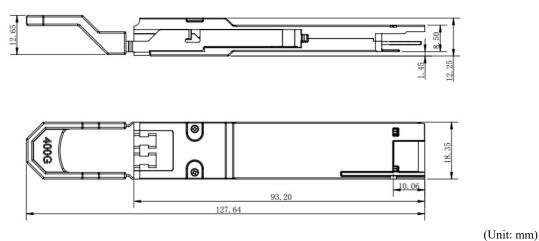
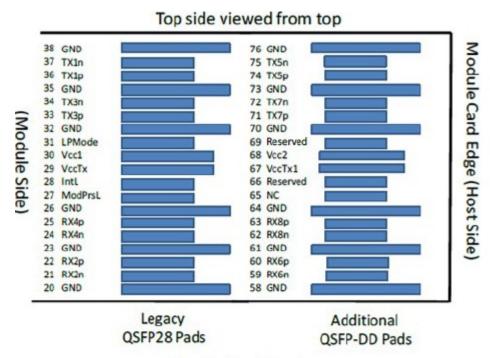



Figure 3. Transceiver outline

7

6.2 Printed Circuit Board Connector Layout

Top side viewed from top

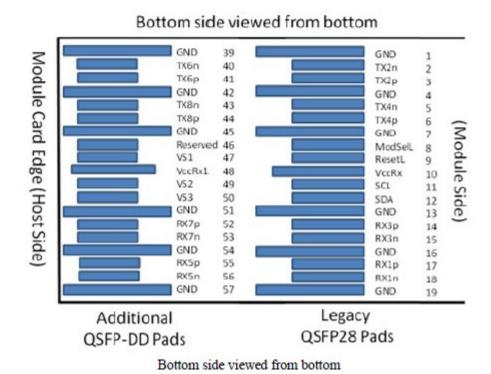


Figure 4. Pattern Layout for QSFP Printed Circuit Board

7. Pin Configuration

Table 3. Pin description

Pin #	Logic	Symbol	Description	Plug Sequence	Notes
1		GND	Ground	1B	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3B	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3B	
4		GND	Ground	1B	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3B	
7		GND	Ground	1B	1
8	LVTTL-I	ModSelL	Module Select	3B	
9	LVTTL-I	ResetL	Module Reset	3B	
10		VccRx	+3.3V Power Supply Receiver	2B	2
11	LVCMOS-I/O	SCL	2-wire serial interface clock	3B	
12	LVCMOS-I/O	SDA	2-wire serial interface data	3B	
13		GND	Ground	1B	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3B	
15	CML-O	Rx3n	Receiver Inverted Data Output	3B	
16		GND	Ground	1B	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3B	
18	CML-O	Rx1n	Receiver Inverted Data Output	3B	
19		GND	Ground	1B	1
20		GND	Ground	1B	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3B	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3B	
23		GND	Ground	1B	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3B	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3B	
26		GND	Ground	1B	1
27	LVTTL-O	ModPrsL	Module Present	3B	
28	LVTTL-O	IntL	Interrupt	3B	
29		VccTx	+3.3V Power supply transmitter	2B	2
30		Vcc1	+3.3V Power supply	2B	2
31	LVTTL-I	LPMode	Low Power Mode	3B	
32		GND	Ground	1B	1
33	CML-I	Tx3p	Transmitter Non-Inverted Data Input	3B	
34	CML-I	Tx3n	Transmitter Inverted Data Input	3B	
35		GND	Ground	1B	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3B	
37	CML-I	Tx1n	Transmitter Inverted Data Input	3B	
38		GND	Ground	1B	1
39		GND	Ground	1A	1
40	CML-I	Tx6n	Transmitter Inverted Data Input	3A	

41	CML-I	Тх6р	Transmitter Non-Inverted Data Input	3A	
42		GND	Ground	1A	1
43	CML-I	Tx8n	Transmitter Inverted Data Input	3A	
44	CML-I	Tx8p	Transmitter Non-Inverted Data Input	3A	
45		GND	Ground	1A	1
46		Reserved	For future use	3A	3
47		VS1	Module Vendor Specific 1	3A	3
48		VccRx1	3.3V Power Supply	2A	2
49		VS2	Module Vendor Specific 2	3A	3
50		VS3	Module Vendor Specific 3	3A	3
51		GND	Ground	1A	1
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	3A	
53	CML-O	Rx7n	Receiver Inverted Data Output	3A	
54		GND	Ground	1A	1
55	CML-O	Rx5p	Receiver Non-Inverted Data Output	3A	
56	CML-O	Rx5n	Receiver Inverted Data Output	3A	
57		GND	Ground	1A	1
58		GND	Ground	1A	1
59	CML-O	Rx6n	Receiver Inverted Data Output	3A	
60	CML-O	Rx6p	Receiver Non-Inverted Data Output	3A	
61		GND	Ground	1A	1
62	CML-O	Rx8n	Receiver Inverted Data Output	3A	
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	3A	
64		GND	Ground	1A	1
65		NC	No Connect	3A	3
66		Reserved	For future use	3A	3
67		VccTx1	3.3V Power Supply	2A	2
68		Vcc2	3.3V Power Supply	2A	2
69		Reserved	For Future Use	3A	3
70		GND	Ground	1A	1
71	CML-I	Tx7p	Transmitter Non-Inverted Data Input	3A	
72	CML-I	Tx7n	Transmitter Inverted Data Input	3A	
73		GND	Ground	1A	1
74	CML-I	Tx5p	Transmitter Non-Inverted Data Input	3A	
75	CML-I	Tx5n	Transmitter Inverted Data Input	3A	
76		GND	Ground	1A	1

Note 1: QSFP-DD uses common ground (GND) for all signals and supply (power). All are common within the QSFP-DD module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane. Each connector Gnd contact is rated for a steady state current of 500 mA.

Note 2: VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 shall be applied concurrently. For power classes 4 and above the module differential loading of input voltage pads must not result in exceeding contact current limits. Each connector Vcc contact is rated for a steady state current of 1500 mA.

Note 3: Reserved pad recommended to be terminated with 10 k ohm to ground on the host. Pad 65 (No Connect) Shall be left unconnected within the module, optionally pad 65 may get terminated with 10 k ohm to ground on the host.

Plug Seq.: Pin engagement sequence during hot plugging.

8. Recommended interface circuit

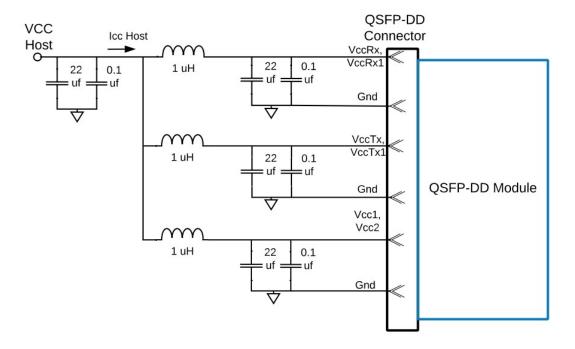


Figure 5. Recommended Host Board Supply Filtering Network

9. Digital Diagnostic Monitor Accuracy

Table 4. DDM Accuracy

Parameter	Unit	Accuracy
Tx Optical Power (Average)	dB	+/- 3
Rx Optical Power (Average)	dB	+/- 3
Channel Bias Current	%	+/- 10
Power Supply Voltage	%	+/-5
Temperature (Case)	deg.C	+/- 3

10. Label

OD-PPMR4F410ST0
YYYY-MM-SSSSSS
MADE IN Country
Class 1 Laser Product

Line 1; NEC logo Line 2; Part Number Line 3; Serial Number

Line 4; Country of Manufacture Line 5; Class 1 Laser Product

11.Ordering Information

Part Number	Fiber Optical Connector	Transmission distance	Case Temperature
OD-PPMR4F410ST0	LC	Up to 2km	0 to 70 deg.C

- Revision history -

Revision	Date	Contents
01E	26 th June 2024	First Release
02E	16 th June 2025	Srial Number Format Changed

Area of caution

Areas of caution in the handling of laser diode products.

- •This product complies with EN 60825-1:2014 + A11:2021, IEC 60825-1:2014, IEC 60825-1:2007 and 21 CFR 1040.10, which correspond to the category "Class 1 Laser Product" under EN regulation, "Class 1 Laser Product" under IEC regulation and "Class I Laser product" under FDA regulation.
- •During operations, the laser diode discharges red beams and infrared beams invisible to the eye. Since it is very hazardous if these beams directly, or bypassing through a lens, get in one's eyes, please try to avoid this.
- Take proper Electrostatic-discharge (ESD) precautions while handling the device. The device is sensitive to ESD.
- May cause of damage if drop or subject to shock. This product includes optical parts.
- Caution-use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

Areas of caution in handling GaAs.

There are some products in our catalogue that use GaAs. Please strictly adhere to the caution items appearing below, in order to prevent dangerous situations.

- oDo not put the product in your mouth.
- oDo not turn the product into a vaporous or powdered form through burning, grinding or chemical processing.
- oWhen disposing of the product, follow related laws, and your company's internal waste control regulations.

Areas of caution in handling optical fiber products.

- •Be careful not to pierce your skins as the tips of optical fibers are extremely sharp. Especially you must attention in case of hazardous if they pierce one's eyes.
- Do not apply extreme stress to optical fiber, or it may cause deterioration of characteristics or disconnection. The force of pull should be less than 200gf, and a radius for bending should be larger than R30 mm
- Do not hold only optical fiber or module package, because extreme stress is easy to apply to the optical fiber edge of the module

In generally, failure occurs in electronic components with a certain probability. We at NEC work to improve the quality and reliability of industrial electronic components, but it is impossible to reduce such probability to zero. This being the case, users of NEC industrial electronic components are requested to provide redundant design, counterburning design, malfunction prevention design and other safety design to prevent failures that may cause possible accidents involving injuries of death, fire, social damages, etc.

NEC classifies the quality standard of its industrial electronic components into three categories, from the "Standard level" for lower quality upward to "Special level" and "specific level" for which customers are requested to designate their own quality assurance program. Respective quality levels are intended to being used for the following applications. In this connection, users considering to use NEC components for other than the "Standard level" application are always requested to contact an NEC sales representative in advance.

Standard level: For computers, O.A.(Office Automation) equipment, telecommunications equipment, measuring equipment, AV(Audio/Video) equipment, home electric appliances, machine tools, personal equipment and industrial robots

Special level: Transportation machinery (automobiles, trains, ships, etc.), traffic signal equipment, disaster/crime prevention devices, various safety devices, and medical equipment not directly intended for life support.

Specific level: Aeronautical equipment, aerospace equipment, submarine relay equipment, nuclear control system, and medical equipment, devices or systems for life support.

NEC does not manufacture, as standard items, products recommendable to such "specific" applications as aerospace equipment, submarine relay equipment, nuclear control system and life-support medical equipment, which all require a very high levels of reliability. Customers planning to use our products for the above-mentioned applications or those planning to use our products of "standard" or "special" quality level for other application than intended by us, are requested to contact in addition, please note that NEC industrial electronic components listed in catalogs, data sheets, data books and other materials published by NEC without the indication of their quality level are all of the standard quality level.

• Specifications and/or other content of the products carried in NEC publications are subject to change without notice.

- oReproduction of this document is prohibited without the prior written permission of NEC.
- oNEC shall not be liable for problems involving the industrial property right of third parties and arising from the use of NEC product(s) unless the problem directly related with the structure and/or method of manufacture of the products.
- oThese products are not designed for radiation resistance.
- of the products carried by this catalog, those failing under the category of restricted cargo, etc. (or services) as stipulated by the Foreign Exchange and Foreign Trade Control Law require an export license from the Japanese government according to the same law before export to countries outside Japan.

Contact information:

NEC Corporation

Fiber Optic Devices Department

1131, Hinode, Abiko, Chiba 270-1198, Japan Tel: +81-4-7185-7410 Fax: +81-4-7185-7925